Silencing of elongation factor-2 kinase potentiates the effect of 2-deoxy-D-glucose against human glioma cells through blunting of autophagy.
نویسندگان
چکیده
2-Deoxy-d-glucose (2-DG), a synthetic glucose analogue that acts as a glycolytic inhibitor, is currently being evaluated in the clinic as an anticancer agent. In this study, we observed that treatment of human glioma cells with 2-DG activated autophagy, a highly conserved cellular response to metabolic stress and a catabolic process of self-digestion of intracellular organelles for energy use and survival in stressed cells. The induction of autophagy by 2-DG was associated with activation of elongation factor-2 kinase (eEF-2 kinase), a structurally and functionally unique enzyme that phosphorylates eEF-2, leading to loss of affinity of this elongation factor for the ribosome and to termination of protein elongation. We also showed that inhibition of eEF-2 kinase by RNA interference blunted the 2-DG-induced autophagic response, resulted in a greater reduction of cellular ATP contents, and increased the sensitivity of tumor cells to the cytotoxic effect of 2-DG. Furthermore, the blunted autophagy and enhanced 2-DG cytotoxicity were accompanied by augmentation of apoptosis in cells in which eEF-2 kinase expression was knocked down. The results of this study indicate that the energy stress and cytotoxicity caused by 2-DG can be accelerated by inhibition of eEF-2 kinase, and suggest that targeting eEF-2 kinase-regulated autophagic survival pathway may represent a novel approach to sensitizing cancer cells to glycolytic inhibitors.
منابع مشابه
eEF-2 kinase dictates cross-talk between autophagy and apoptosis induced by Akt Inhibition, thereby modulating cytotoxicity of novel Akt inhibitor MK-2206.
Inhibition of the survival kinase Akt can trigger apoptosis, and also has been found to activate autophagy, which may confound tumor attack. In this study, we investigated regulatory mechanisms through which apoptosis and autophagy were modulated in tumor cells subjected to Akt inhibition by MK-2206, the first allosteric small molecule inhibitor of Akt to enter clinical development. In human gl...
متن کاملThymoquinone synergistically potentiates temozolomide cytotoxicity through the inhibition of autophagy in U87MG cell line
Objective(s): Glioblastoma multiforme (GBM) is one of the most lethal forms of human cancer and temozolomide (TMZ) is currently part of the standard treatment for this disease. Combination therapy using natural substances can enhance the anti-cancer activity of TMZ. The purpose of this study was to evaluate the effect of TMZ in combination with thymoquinone (TQ) on human GBM cell line (U87MG). ...
متن کاملSilencing of EEF2K (eukaryotic elongation factor-2 kinase) reveals AMPK-ULK1-dependent autophagy in colon cancer cells
EEF2K (eukaryotic elongation factor-2 kinase), also known as Ca (2+)/calmodulin-dependent protein kinase III, functions in downregulating peptide chain elongation through inactivation of EEF2 (eukaryotic translation elongation factor 2). Currently, there is a limited amount of information on the promotion of autophagic survival by EEF2K in breast and glioblastoma cell lines. However, the precis...
متن کاملRadiosensitizing effect of deferoxamine on human glioma cells
ABSTRACT Background: Tumor cells exhibit an increased requirement for iron to support their rapid proliferation. Deferoxamine (DFO), an iron chelator, has been reported to have anti-proliferative effects on cancer cells through induction of apoptosis and cell cycle arrest. X-rays also induce apoptosis and cell cycle arrest. However, limited information is available regarding the effect of iron...
متن کاملInhibition of Elongation Factor-2 Kinase Augments the Antitumor Activity of Temozolomide against Glioma
BACKGROUND Glioblastoma multiforme (GBM), the most common form of brain cancer with an average survival of less than 12 months, is a highly aggressive and fatal disease characterized by survival of glioma cells following initial treatment, invasion through the brain parenchyma and destruction of normal brain tissues, and ultimately resistance to current treatments. Temozolomide (TMZ) is commonl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 69 6 شماره
صفحات -
تاریخ انتشار 2009